Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.

Identifieur interne : 002A10 ( Main/Exploration ); précédent : 002A09; suivant : 002A11

Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.

Auteurs : Jia-Ping Zhao [République populaire de Chine] ; Xiao-Ling Jiang ; Bing-Yu Zhang ; Xiao-Hua Su

Source :

RBID : pubmed:23028709

Descripteurs français

English descriptors

Abstract

MicroRNAs (miRNAs), a type of short (21-23 nucleotides), non-coding RNA molecule, mediate repressive gene regulation through RNA silencing at the post-transcriptional level, and play an important role in defense and response to abiotic and biotic stresses. In the present study, Affymetrix® miRNA Array, real-time quantitative PCR (qPCR) for miRNAs and their targets, and miRNA promoter analysis were used to validate the gene expression patterns of miRNAs in Populus trichocarpa plantlets induced with the poplar stem canker pathogen, Botryosphaeria dothidea. Twelve miRNAs (miR156, miR159, miR160, miR164, miR166, miR168, miR172, miR319, miR398, miR408, miR1448, and miR1450) were upregulated in the stem bark of P. trichocarpa, but no downregulated miRNAs were found. Based on analysis of the miRNAs and their targets, a potential co-regulatory network was developed to describe post-transcriptional regulation in the pathological development of poplar stem canker. There was highly complex cross-talk between diverse miRNA pathway responses to biotic and abiotic stresses. The results suggest that miR156 is probably an integral component of the miRNA response to all environmental stresses in plants. Cis-regulatory elements were binding sites for the transcription factors (TFs) on DNA. Promoter analysis revealed that TC-rich repeats and a W1-box motif were both tightly related disease response motifs in Populus. Promoter analysis and target analysis of miRNAs also revealed that some TFs regulate their activation/repression. Furthermore, a feedback regulatory network in the pathological development of poplar stem canker is provided. The results confirm that miRNA pathways regulate gene expression during the pathological development of plant disease, and provide new insights into understanding the onset and development of poplar stem canker.

DOI: 10.1371/journal.pone.0044968
PubMed: 23028709
PubMed Central: PMC3445618


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.</title>
<author>
<name sortKey="Zhao, Jia Ping" sort="Zhao, Jia Ping" uniqKey="Zhao J" first="Jia-Ping" last="Zhao">Jia-Ping Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China. zhaojiaping@gmail.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Xiao Ling" sort="Jiang, Xiao Ling" uniqKey="Jiang X" first="Xiao-Ling" last="Jiang">Xiao-Ling Jiang</name>
</author>
<author>
<name sortKey="Zhang, Bing Yu" sort="Zhang, Bing Yu" uniqKey="Zhang B" first="Bing-Yu" last="Zhang">Bing-Yu Zhang</name>
</author>
<author>
<name sortKey="Su, Xiao Hua" sort="Su, Xiao Hua" uniqKey="Su X" first="Xiao-Hua" last="Su">Xiao-Hua Su</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23028709</idno>
<idno type="pmid">23028709</idno>
<idno type="doi">10.1371/journal.pone.0044968</idno>
<idno type="pmc">PMC3445618</idno>
<idno type="wicri:Area/Main/Corpus">002864</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002864</idno>
<idno type="wicri:Area/Main/Curation">002864</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002864</idno>
<idno type="wicri:Area/Main/Exploration">002864</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.</title>
<author>
<name sortKey="Zhao, Jia Ping" sort="Zhao, Jia Ping" uniqKey="Zhao J" first="Jia-Ping" last="Zhao">Jia-Ping Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China. zhaojiaping@gmail.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Xiao Ling" sort="Jiang, Xiao Ling" uniqKey="Jiang X" first="Xiao-Ling" last="Jiang">Xiao-Ling Jiang</name>
</author>
<author>
<name sortKey="Zhang, Bing Yu" sort="Zhang, Bing Yu" uniqKey="Zhang B" first="Bing-Yu" last="Zhang">Bing-Yu Zhang</name>
</author>
<author>
<name sortKey="Su, Xiao Hua" sort="Su, Xiao Hua" uniqKey="Su X" first="Xiao-Hua" last="Su">Xiao-Hua Su</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascomycota (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Plant Diseases (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (microbiology)</term>
<term>Populus (physiology)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (métabolisme)</term>
<term>Ascomycota (physiologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (physiologie)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Plant</term>
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Gènes de plante</term>
<term>Populus</term>
<term>Régions promotrices (génétique)</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN des plantes</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ascomycota</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ascomycota</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régulation positive</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MicroRNAs (miRNAs), a type of short (21-23 nucleotides), non-coding RNA molecule, mediate repressive gene regulation through RNA silencing at the post-transcriptional level, and play an important role in defense and response to abiotic and biotic stresses. In the present study, Affymetrix® miRNA Array, real-time quantitative PCR (qPCR) for miRNAs and their targets, and miRNA promoter analysis were used to validate the gene expression patterns of miRNAs in Populus trichocarpa plantlets induced with the poplar stem canker pathogen, Botryosphaeria dothidea. Twelve miRNAs (miR156, miR159, miR160, miR164, miR166, miR168, miR172, miR319, miR398, miR408, miR1448, and miR1450) were upregulated in the stem bark of P. trichocarpa, but no downregulated miRNAs were found. Based on analysis of the miRNAs and their targets, a potential co-regulatory network was developed to describe post-transcriptional regulation in the pathological development of poplar stem canker. There was highly complex cross-talk between diverse miRNA pathway responses to biotic and abiotic stresses. The results suggest that miR156 is probably an integral component of the miRNA response to all environmental stresses in plants. Cis-regulatory elements were binding sites for the transcription factors (TFs) on DNA. Promoter analysis revealed that TC-rich repeats and a W1-box motif were both tightly related disease response motifs in Populus. Promoter analysis and target analysis of miRNAs also revealed that some TFs regulate their activation/repression. Furthermore, a feedback regulatory network in the pathological development of poplar stem canker is provided. The results confirm that miRNA pathways regulate gene expression during the pathological development of plant disease, and provide new insights into understanding the onset and development of poplar stem canker.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23028709</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>e44968</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0044968</ELocationID>
<Abstract>
<AbstractText>MicroRNAs (miRNAs), a type of short (21-23 nucleotides), non-coding RNA molecule, mediate repressive gene regulation through RNA silencing at the post-transcriptional level, and play an important role in defense and response to abiotic and biotic stresses. In the present study, Affymetrix® miRNA Array, real-time quantitative PCR (qPCR) for miRNAs and their targets, and miRNA promoter analysis were used to validate the gene expression patterns of miRNAs in Populus trichocarpa plantlets induced with the poplar stem canker pathogen, Botryosphaeria dothidea. Twelve miRNAs (miR156, miR159, miR160, miR164, miR166, miR168, miR172, miR319, miR398, miR408, miR1448, and miR1450) were upregulated in the stem bark of P. trichocarpa, but no downregulated miRNAs were found. Based on analysis of the miRNAs and their targets, a potential co-regulatory network was developed to describe post-transcriptional regulation in the pathological development of poplar stem canker. There was highly complex cross-talk between diverse miRNA pathway responses to biotic and abiotic stresses. The results suggest that miR156 is probably an integral component of the miRNA response to all environmental stresses in plants. Cis-regulatory elements were binding sites for the transcription factors (TFs) on DNA. Promoter analysis revealed that TC-rich repeats and a W1-box motif were both tightly related disease response motifs in Populus. Promoter analysis and target analysis of miRNAs also revealed that some TFs regulate their activation/repression. Furthermore, a feedback regulatory network in the pathological development of poplar stem canker is provided. The results confirm that miRNA pathways regulate gene expression during the pathological development of plant disease, and provide new insights into understanding the onset and development of poplar stem canker.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jia-Ping</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Silviculture and Conservation, Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China. zhaojiaping@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Xiao-Ling</ForeName>
<Initials>XL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bing-Yu</ForeName>
<Initials>BY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xiao-Hua</ForeName>
<Initials>XH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001203" MajorTopicYN="N">Ascomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23028709</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0044968</ArticleId>
<ArticleId IdType="pii">PONE-D-12-02748</ArticleId>
<ArticleId IdType="pmc">PMC3445618</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2008 Oct;102(4):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 May;19(5):480-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1998 Feb;8(1):76-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 Sep;12(9):1612-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16888323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15100397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17615233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1453-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(6):912-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21143673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(5):876-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1998 Sep;7(9):1915-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Aug;1(4):311-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2009 Aug;19(4):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2745-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Feb 18;583(4):723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(2):785-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22048038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2005 May;15(5):336-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Feb 22;15(4):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2120-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2006 Jan 1;289(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Feb;138(2):226-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2009;25:21-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Sep;71(1-2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19533381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):705-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):378-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jun 22;14(12):1035-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15202996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3824-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Feb;7(2):e1002012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):1077-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):778-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2007;3:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17437028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Oct;61(15):4157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 May;38(9):3081-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2009 May;36(5):939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18454352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Mar;229(4):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19148671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):964-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;639:253-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20387051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Dec 15;166(18):2046-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19628301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2010 Nov;10(4):493-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20676715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Jan 23;136(2):215-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Oct;16(10):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Oct;230(5):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19655164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Oct 16;388(2):272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Mar;5(3):252-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20023405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Jun;34(3):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9225853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jan;231(2):475-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19937257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18402695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Jiang, Xiao Ling" sort="Jiang, Xiao Ling" uniqKey="Jiang X" first="Xiao-Ling" last="Jiang">Xiao-Ling Jiang</name>
<name sortKey="Su, Xiao Hua" sort="Su, Xiao Hua" uniqKey="Su X" first="Xiao-Hua" last="Su">Xiao-Hua Su</name>
<name sortKey="Zhang, Bing Yu" sort="Zhang, Bing Yu" uniqKey="Zhang B" first="Bing-Yu" last="Zhang">Bing-Yu Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhao, Jia Ping" sort="Zhao, Jia Ping" uniqKey="Zhao J" first="Jia-Ping" last="Zhao">Jia-Ping Zhao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23028709
   |texte=   Involvement of microRNA-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23028709" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020